a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
↳ QTRS
↳ DependencyPairsProof
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
MARK1(tail1(X)) -> MARK1(X)
MARK1(zeros) -> A__ZEROS
MARK1(cons2(X1, X2)) -> MARK1(X1)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
MARK1(tail1(X)) -> MARK1(X)
MARK1(zeros) -> A__ZEROS
MARK1(cons2(X1, X2)) -> MARK1(X1)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
MARK1(tail1(X)) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(cons2(X1, X2)) -> MARK1(X1)
Used ordering: Polynomial interpretation [21]:
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
MARK1(tail1(X)) -> MARK1(X)
POL(0) = 0
POL(A__TAIL1(x1)) = x1
POL(MARK1(x1)) = 1 + x1
POL(a__tail1(x1)) = x1
POL(a__zeros) = 1
POL(cons2(x1, x2)) = 1 + x1 + x2
POL(mark1(x1)) = 1 + x1
POL(tail1(x1)) = x1
POL(zeros) = 0
a__tail1(X) -> tail1(X)
mark1(zeros) -> a__zeros
a__zeros -> cons2(0, zeros)
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__zeros -> zeros
mark1(0) -> 0
mark1(tail1(X)) -> a__tail1(mark1(X))
a__tail1(cons2(X, XS)) -> mark1(XS)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
MARK1(tail1(X)) -> MARK1(X)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(tail1(X)) -> MARK1(X)
Used ordering: Polynomial interpretation [21]:
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
POL(0) = 1
POL(A__TAIL1(x1)) = x1
POL(MARK1(x1)) = x1
POL(a__tail1(x1)) = 1 + x1
POL(a__zeros) = 1
POL(cons2(x1, x2)) = x1 + x2
POL(mark1(x1)) = 1 + x1
POL(tail1(x1)) = 1 + x1
POL(zeros) = 0
a__tail1(X) -> tail1(X)
mark1(zeros) -> a__zeros
a__zeros -> cons2(0, zeros)
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__zeros -> zeros
mark1(0) -> 0
mark1(tail1(X)) -> a__tail1(mark1(X))
a__tail1(cons2(X, XS)) -> mark1(XS)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(tail1(X)) -> A__TAIL1(mark1(X))
Used ordering: Polynomial interpretation [21]:
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
POL(0) = 0
POL(A__TAIL1(x1)) = x1
POL(MARK1(x1)) = x1
POL(a__tail1(x1)) = 1 + x1
POL(a__zeros) = 0
POL(cons2(x1, x2)) = x2
POL(mark1(x1)) = x1
POL(tail1(x1)) = 1 + x1
POL(zeros) = 0
a__tail1(X) -> tail1(X)
mark1(zeros) -> a__zeros
a__zeros -> cons2(0, zeros)
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__zeros -> zeros
mark1(0) -> 0
mark1(tail1(X)) -> a__tail1(mark1(X))
a__tail1(cons2(X, XS)) -> mark1(XS)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__TAIL1(cons2(X, XS)) -> MARK1(XS)
a__zeros -> cons2(0, zeros)
a__tail1(cons2(X, XS)) -> mark1(XS)
mark1(zeros) -> a__zeros
mark1(tail1(X)) -> a__tail1(mark1(X))
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
mark1(0) -> 0
a__zeros -> zeros
a__tail1(X) -> tail1(X)